Over-training large language models may make them harder to fine-tune

A small team of AI researchers from Carnegie Mellon University, Stanford University, Harvard University and Princeton University, all in the U.S., has found that if large language models are over-trained, it might make them harder to fine-tune. In their paper posted on the arXiv preprint server, the group compared the impact of different amounts of training on a single LLM.

This article was originally published on this website.